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LETlTR TO THE EDITOR 

Long-range radiative interaction of magnetic moments in an 
electromagnetic wave 

S T Zavtrak 
Department of Physics, V I Lenin Belorussian State University, 220080 Minsk, USSR 

Received 23 May 1989, in final form 11 April 1990 

Abstract. The induced oscillations of magnetic moments result in the appearance of 
time-averaged, long-range radiative forces. These forces are square-law ones to the field 
amplitude and decrease inversely proportionally to the distance between the moments. The 
magnetic moments are considered to be classical or quantum and the electromagnetic 
waves are considered to be classical. 

Recently it was found that the induced oscillations of small particles (gas bubbles and 
solid corpuscles) in compressible liquid under the action of sound waves result in the 
appearance of long-range radiative forces [ 1-41. These time-averaged forces are square- 
law ones to the field amplitude and decrease inversely proportionally to the distance 
between the particles. The relative motion of two particles was investigated in [4]. 
Doinikov and Zavtrak [4] have explained the phenomenon of the bound state formation 
of the gas bubbles which were observed in [5]. Finally, it was found in [6] that the 
induced dipole oscillations of the charged particles in an electromagnetic field lead to 
the appearance of analogous radiative forces. These forces are caused by the secondary 
radiation of the charges. 

In this letter the classical and quantum theory of the radiative interaction of two 
magnetic moments in electromagnetic waves is suggested. The external fields result in 
force moments and consequently lead to the precession of magnetic moments. The 
oscillating magnetic moments radiate the secondary electromagnetic waves which give 
rise to the forces mentioned above. The particles (magnetic moments) are considered 
to be classical or quantum and the electromagnetic waves are considered to be classical. 

Such possible interdisciplinary transfer is based on the formal analogy of corre- 
sponding equations as is usual in physics [7-91. It is also clear that the term particle 
itself has not the same significance in fluid mechanics as in electrodynamics. 

Let us consider two magnetic moments in an external magnetic wave He,,= 
WO cos(wt - k - r) ,  where Ho is the amplitude of the magnetic intensity vector, o is the 
cyclic frequency and k is the wavevector. Let r1,2 be the radius vectors of their positions. 
The magnetic moments P , , ~  are expressed through the usual impulsive moments L,,* 
(as h = l )  

P 1 . 2  = g1,2~Bl,2L1,2 
where 11.81.2 are Bohr magnetons [IO] and g1,2 are g-factors. The magnetic field H(r ,  ?) 
results in the force moments and consequently leads to the precession [ 113 

G . 2  = b l .2 ,  H(r1.2, t)I. 
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For the small oscillations one obtains 

w 1 , 2  = g i , 2 C L B l . 2 [ P l , 2 ,  w r 1 . 2 ,  t)l. 
In this equation p1,2 can be considered to be constant vectors. 
The oscillating magnetic moments radiate the electromagnetic waves. At the far 

zone klr,  - r21 >> 1 (we examine only the far zone because the most interesting results 
occur at this limit) the scattering magnetic intensity vectors are [ll] 

The unit vectors nl,2 give the direction of radiation, R1,2 are the propagation 
distances, c is the velocity of light. The expression (2) should be calculated at delayed 
moments of time. 

The resulting magnetic field acting at the particle is the sum of the external wave 
and the wave created by the neighbouring oscillating moment. Therefore 

(3) 
w l ( t ) = g l C L B l [ r l ,  Hoco4wt-k.  r1)+M2(r1, t ) l  
W 2 ( t )  = ~ , C L B ~ [ P ~  HO cos(wt - k * r 2 )  + H r l ( r 2  3 t ) I*  

b ( t )  = ~ C c l O ( t ) + ~ C c l l ( ~ )  & 4 2 ( f )  = W 2 0 ( t ) + ~ C r 2 1 ( t )  (4) 

The solution of this system can be represented as 

where 

g I P B 1  
S C l l o ~ t ~ = ~ ~ ~ l , H o l s i n ~ w ~ - ~ ~  rl) 

and n = l / l ,  1 = r 2 - r 1 .  
The energy of the first moment in a magnetic field is W, = - ( ( p l  +t ipl)  - H , ( r , ,  t ) )  

where Hl(rl, t )  =Hext(rl, t)+Hr2(rl, t). Analogously W 2 =  - ( (p2+Sp2)  .H2(r2, t ) )  
where H 2 ( r 2 ,  t ) = H e x t ( r 2 ,  l ) + H r l ( r 2 9  t ) .  

The time-averaged forces acting on the magnetic moments can be usually calculated 
as [12] 
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It can be seen that the presence of external electromagnetic waves results in the 
appearance of long-range (-1-I) radiative forces. This effect is analogous to the 
corresponding effects arising in classical acoustics. 

It follows from expression (7) that the radiative forces consist of two components. 
One type has I-direction and the second type has k-direction. The sum Fl and F2 is 
not equal to zero. To our knowledge this result was found first in [l]. 

We should like to note that the forces (7) correspond to the action of the external 
waves (which are the sums of the incident wave and the wave created by the neighbour- 
ing moment) on the magnetic moments. Now to the self-interaction of the radiation 
field of the particle on itself. This question was considered in [ 113 .  It was found [ 11, 
pp 245-61 that the resulting self-interaction force of the magnetic moment is equal to 
zero. 

Let us try to evaluate the forces (7). At far zone k l x  1 the relation of the radiative 
force (7) to the usual static force of interaction is proportional to the parameter 
E = (k1)3(CtL/w)2. Here nL = pBHo is the Larmor frequency in static magnetic field of 
magnitude Ho. At near zone kl<< 1 the calculations give E = ( f lL/w)2.  

Let us consider two quantum magnetic moments which are placed in an electromag- 
netic wave. The Hamiltonian of such a system is given by [lo] 

k ( t ) = - g l p B I ( $ & l  H(rl, t ) ) -g2pE42($&2 ' H ( r 2 ,  t ) )  (8) 
where 
spins). The operators of magnetic moments are fil,2 = g1,2+B1,2&1,2/2.  

are the Pauli spin matrices (we suppose that the particles have half-integral 

The solution of the Schrodinger equation ( h  = 1) 

il$(t)) = f i ( t ) l $ ( N  (9) 
can be represented as 

IW)> = fi&> fiZ(f)l+O) 

where the unitary operators f i1 ,2(t)  are 

In expression (11) are Fedorov's vector parameters of a rotation group [13]. 
With an accuracy to the first order in field amplitude one obtains 

a l , 2 ( t )  = $ 8 1 , 2 / L B 1 , 2 H ( r l , 2 r  t ) *  (12) 
The radiative forces acting at the magnetic moments can be calculated as [lo] 

Let us take into account that the resulting magnetic field acting on the particle is 
the sum of the external wave and the wave created by neighbouring moment. Then 

H ( r , ,  t )  = Ho cos(wt - k  r l ) + H , * ( r 1 ,  t)  

H ( r 2 ,  t )  = WO cos(ot - k. r2)+Hr,(r2, t ) .  (14)  

At the far zone kl>> 1 the scattering waves are (the electromagnetic waves are 
considered to be classical): 
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with 
m1,2( t )  = (+( t ) lpl ,2l+(  t ) )  = g 1 , 2 ~ B 1 , 2 ( + (  t ) IW1 .21+(  t ) ) .  

m1,2(t) = d,2PLZsl.Z(JI( t ) l [ t 6 . 2 ,  H ( r 1 , 2  , t ) I M  t)). 

ml ,2 ( t )  = m$+ am(,::( t )  

“ 0 ’  - 
1.2 - ~ l , 2 P B l , 2 ~ J I o l ~ ~ l , 2 l J I o ~  

(16) 

(17) 
It follows from (9) and (16) that 

Solving the nonlinear equations (14), ( 1 9 ,  (17) with an accuracy to the first order 
in field amplitude we have 

where 
(18) 

(19) 
g l P B l  g 1 8 2 P B l P B 2  

c21 
Sm\”(t)=-[mio’,  HO] sin(ot-k.  r l )+  

w 

~[m‘,~’,[[[mi~’,H~], n], n]] cos[wt-k. r 2 - k 1 ) + 0 ( 1 / 1 2 )  (20) 

~ [ m : ~ ’ , [ [ [ m \ ~ ’ , H ~ ] ,  n ] ,  n]]cos(wt-k- rl-kl)+O(l/12).  (21) 

(F2)  = S ( k  - kn) sin( k l -  k * I )  (22) 
The substitution of (14), (15 ) ,  (20), (21) into (13) and time averaging leads to: 

(FJ  = S( k + kn) sin( kl+ k I) 
where 

- (m(O) 1 , H 2 , n)(&, n) + (n ,  Hd2(m(lo) ,  mio’)]. 
It can be seen that the structure of forces (22) is analogous to the radiative forces 

The presence of an external electromagnetic wave results in the appearance of 
long-range radiative forces between two classical or quantum magnetic moments. These 
time-averaged forces are square-law ones to the field amplitude and decrease inversely 
proportionally to the distance between the moments. This effect is analogous to the 
corresponding effects arising in classical acoustics. 

(7). 
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